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I examine the potential of a pointlike particle carrying SU (No) charge in a gauge 
theory with a dilaton. The potential depends on boundary conditions imposed on 
the dilaton: For a dilaton that vanishes at infinity the resulting potential is a 
regularized Coulomb potential of the form (r + r,) -~, with r~, inversely 
proportional to the decay constant of the dilaton. Another natural constraint on 
the dilaton ~b is independence of (l/g 2) exp(~b/f~,) from the gauge coupling g. 
This requirement yields a conf'ming potential proportional to r. 

1. I N T R O D U C T I O N  

Dilatons are excitations o f  a field ~b which typically couples to other 
fields X through terms of  the form exp(~/ f~)L(  X, 0X). L can involve curvature 
terms, Yang-Mil l s  terms, or mass  terms, and dilatons arise either as covar iant  
fields under  rescalings of  four-dimensional  coordinates if  conformal  gravi ty  
is constructed with first-order terms in the curvature as in Dirac (1973), or 
as scalar fields in the f r amework  of  string theory and Ka luza -Kle in  theory 
(e.g., Green et al., 1987). An unambiguous  property o f  a string dilaton at 
tree level and a Ka luza -Kle in  dilaton in four  dimensions  is, besides its scalar 
t ransformation behavior,  its coupling to gauge fields through a term exp(~b/ 
f ~ ) F  2, and we will use this as the defining property of  a dilaton. Dilatons 
arise f rom the massless  spectrum of  fundamental  strings in two different 
ways:  On the one hand there is the model- independent  dilaton arising as a 
unique massless  scalar state of  closed superstrings, while on the other hand 
nonlinear combinat ions  of  ten-dimensional  massless  tensor states measure  
the vo lume of  internal dimensions and appear  as Ka luza -Kle in  dilatons in 
four  dimensions.  Linear  combinat ions of  these dilatons m a y  couple in different 
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ways to gauge fields arising from different sectors of string theory and from 
compactifications, and the dilaton sector of low-energy quantum field theories 
inherited from string theory can become quite complicated. In spite of these 
possible complications emphasis in the present paper is on the discussion of 
a single low-energy dilaton coupling to SU(Nc) gauge fields, in order to 
acquire a better understanding of the impact of dilatonic degrees of freedom 
in gauge theory. 

In spite of the coupling to gauge fields, the coupling of a string dilaton 
to the Ricci scalar is not Weyl invariant, and the issue arises of whether 
string theory in the low-energy sector is a Brans-Dicke-type theory with a 
coupling exp(~blf~)R or rather predicts Einstein gravity. The latter possibility 
assumes that the four-dimensional metric is only conformally related to a 
Kaluza-Klein-type metric arising through compactification from ten to four 
dimensions. The two alternatives go by the name "string frame" and "Einstein 
frame," and they are clearly experimentally inequivalent, since, e.g., geodesics 
and also the evolution of Friedmann cosmologies in the two theories differ 
considerably. In the present paper I will assume that, at least to first order 
in the curvature, gravity is described by the Einstein-Hilbert term and not 
by a Brans-Dicke-type theory. My main justification for this is the observation 
of Gross and Sloan (1987) that at string tree level no direct coupling of the 
string dilaton to the Einstein-Hilbert term arises. Furthermore, Damour and 
Nordtvedt (1993) observed in a very remarkable paper that couplings of the 
form U(d~)R evolve to Einstein gravity if U(~b) has a minimum, and coupling 
functions of this type may arise through higher loop corrections in string 
theory. 

Besides its appearance in the spectrum of conformal gravity, string 
theory, and Kaluza-Klein theories, the present investigation was also moti- 
vated by the fact that the dilaton begins to play an even more prominent role 
through its covariance under duality symmetries: It was pointed out in Shapere 
et al. (1991) that axion-dilaton-photon systems exhibit a nonlinear duality 
symmetry, mixing axions and dilatons through SL(2, R) transformations, and 
it has been conjectured that S-duality symmetries should be a generic feature 
of the kinetic sector of low-energy quantum field theories (e.g., Font et al., 
1990; Schwarz and Sen, 1994). 

It is familiar from the axion that a (pseudo-scalar) can be very light, 
yet very hard to observe if its decay constant is large enough to suppress the 
couplings at low energies. It is apparent from the equations of motion consid- 
ered below that the same assertion holds for the dilaton. A relevant problem 
then is the question of how a light dilaton affects the Coulomb potential and 
its non-Abelian analog. In order to study this problem we will neglect any 
curvature effects and dilaton mass in the sequel and study the dilaton-gluon 
field generated by a pointlike quark in Minkowski space. For a dilaton 
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vanishing at infinity we will then find a modified Coulomb potential which 
is regularized at a radius 

r ,  = 8avf, 2No 

for gauge group SU(Nc) and 

for U(1). 

g 
r+ - 8~rf, 

On the other hand, a nonvanishing expectation value of the dilaton can 
be absorbed in a rescaling of the gauge coupling, and this gives rise to the 
requirement that exp(~b/f,) should scale like g2. The unique solution satisfying 
this requirement yields a potential proportional to the distance r from the 
SOUrCe. 

Throughout this paper the language of QCD will be used for gauge 
fields, charges, and fermions. Letters from the middle of the alphabet will 
be used both for spatial Minkowski space indices and for color indices, while 
letters from the beginning of the alphabet denote Lie algebra indices. I also 
use the letter �9 for the fast component A ~ of the gauge potential, and the 
signature of the metric is ( -  + + +). 

2. THE GENERALIZED COULOMB POTENTIALS 

As pointed out in the previous section, we expect dilatonic degrees of 
freedom in four-dimensional gauge theories if physics at very high energies 
involves decompactification of internal dimensions or string theory. To 
acquire a better understanding of the impact of dilatons in four-dimensional 
gauge theory, we now will look into the problem of how a light dilaton 
modifies the Coulomb potential and its non-Abelian analog. It turns out that 
the dilaton introduces an ambiguity due to different boundary conditions 
which can be imposed on the dilaton: Two interesting solutions which arise 
include a regularized potential proportional to (r + r,)  -t, where r4, is inversely 
proportional to the decay constant of the dilaton, and a confining potential 
proportional to r. 

Here we are interested in low-energy gauge theories, i.e., in the dynamics 
of initially massless modes from the point of view of string theory. Since 
the compactification scale or string scale is many orders of magnitude larger 
than the weak scale, where the low-energy degrees of freedom described in 
the standard model of particle physics acquire their masses, we do not expect 
the dilaton to couple to the relevant masses at the weak scale. Modulo an 
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effective potential which the dilaton may have acquired on the road down 
from the stfing/compactification scales to temperatures below the SUSY 
scale, the influence of a dilaton on a low-energy gauge theory is then described 
by a Lagrange density 

= - ~  exp Fa~F~aV - -~ 0 ~ "  O~t~ 

+ g':aa xa - 

+ ~ -~f(i~l~O~ 
f=l 

(1) 

with Xa denoting a defining Nc-dimensional representation of su(Nc). 
A Lagrangian of this type would arise, e.g., through compactification 

of five-dimensional QCD (Dick, 1996), with exception of the mass terms, 
which are assumed to arise at a lower scale. Axionic contributions have been 
neglected, since the static pointlike sources considered below would not 
excite the axion field. 

The equations of motion are 

O~(exp(~-~+)F~a~)+g exp(~+)A~C',~bF~" = -g-~l~X~q (2) 

1 x / + \  a 02* = -~f-~,e p l - ' ~ ) F l a . v F a  (3) 

(i~l~ + g'y~ A~Xa - m)q = 0 (4) 

where here and in the sequel flavor indices are suppressed. To analyze 
equation (2) we will find it convenient to rewrite it in terms of the chromo- 
electric and magnetic fields E i --- - F g i X a ,  B i = l . i j k ~ a ' v  . " ~  ~ jk,'Xa. 

V . ( e x p ( ~ ) E ) - i g e x p ( ~ ) ( A . E - E . A ) = p  

0oB + ig[~, BI + V x E - ig(A • E + E • A) = 0 

V . B - i g ( A . B -  B . A )  = 0  

where in the gauge theory above p = g(q+ �9 Xa " q)X% Ji = g('q " "yiXa " q)X a, 
and we have included the Bianchi identities. 
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To discuss the impact of the dilaton on the Coulomb potential we consider 
static configurations: bop = 0, j = 0. Then we learn from 0~j r - ig[Ar j"] 
= 0 that �9 and p are in the same Cartan subalgebra: [qb, p] = 0. 

Pointlike stationary charge distributions, which in the present setting 
give rise to the generalized Coulomb potentials, are special cases of SU(Nc) 
currents of the form 

j~(x) = pa(r)Xa'q~ = p(r)CaXa'q~ (5) 

carrying the same r dependence along any direction in color space. Such 
distributions arise for separable quark wave functions q(x) = ~(x)~, where 

is a constant Lorentz scalar in a spinor representation of SU(Nc), and t~(x) 
is an SU(Nc)-invariant Dirac spinor whose left- and right-handed components 
differ only by a phase. We also assume both factors normalized according 
to f dart~, t~ = 1 ,~+.  ~ = 1. 

For SU(Nc) charges of the form (5) the vector potential can consistently 
be neglected, whence E = - V~  and the Yang-Mills equations reduce to 

[~, v ~ ]  = 0 

Due to (5) the second equation is fulfilled as a consequence of  the first 
equation. 

Our aim is to determine the chromo-electric potential for a point charge 

pa(r) = gCa~(r) 

where Ca denotes the expectation value of  the generator Xa in color space. 
From the relation 

1 ~i l~jk-  1 ~08k l (Xa)iy(xa)M = 2 ~ c  

one finds for arbitrary color content 

N2-1 Nc-- 1 
E - ,~=1 2N~ 

(6) 

We thus want to determine the field of  a stationary pointlike quark from 

V" (exp(~+))Ea(r)) = gCa~(r) (7) 

V )< Ea(r ) = 0 (8) 
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and 

1 e x p ( ~ ) E a ( r ) .  Ea(r ) (9) V6(r) = - ~ - ~  

The unique radially symmetric solution to (7) can be written down 

exp Ea(r) = exp Ea(r)e ,  4 " - ~  er 

immediately: 

whence equation (8) is also satisfied. Equation (9) then translates into 

+ - , ( r )  = 1 - - - - 7 - ]  
r drr 64"ref, ~ 

(10) 

(11) 

The form of this equation suggests an ansatz dp(r)lf~, = a ln(rlb) ,  which 
yields the solution discussed below. However, we can solve (11) for arbitrary 
boundary conditions through a substitution 

g / ' /  1 6(0  
= 4arf#r ~[ '2  2 N ~ '  tp(O - f r  

d 2 1 
a~---~ q~(O = - ~  exp(-q~(O) 

yielding 2 

or in terms of boundary conditions at infinity: 

~0'(0 z - q~'(0) 2 = exp(-g0(O) - exp(-~p(0)) 

[ ,p~o d~o ~= 
~,(o) 4 e x p ( - ~ )  - exp(-~(O)) + ~'(0) 2 

(12) 

(13) 

(14) 

where a sign ambiguity has been resolved by the requirement that the dilaton 

ewe can map the dilaton equation of motion for arbitrary number d of spatial dimensions to 
equation (13) through the substitution 

_ g  ~ _  1 

with 

Ga(r)= - 1 - - l n ( r l ,  d = 2  
z~r \ to/  

F(d/2) l 
Ga(r) = 2(d - 2)v/~ a r a-2 , d > 2 



Potentials of Pointlike Particles 2011 

should not diverge at finite radius. The integral can be done in an elementary 
way, with two branches depending on the sign of (0'(0) 2 - exp(-q~(0)). 

The presence of the dilaton introduced a twofold ambiguity in the Cou- 
lomb problem, and we have to determine from physical requirements which 
boundary conditions to choose. 

For a first solution we require that the dilaton generated by the pointlike 
quark vanishes at infinity while the gradient satisfies the minimality condition 

lim r2 d b(r) = _ g_&_ X/~ 1 (15) 
,-,| 4~r 2Nc 

This gives minimal kinetic energy for the dilaton at infinity subject to the 
constraint that the chromo-electric field does not develop a singularity for 
positive finite r. Then we find for the radial dependence of the dilaton and 
the electric field 

( l) 
~p(r) = 2 f ,  In 1 + 8~rf, r 2~/c (16) 

gC~ 
Ea(r) = er (17) 

4~( r  + (g/81rf +) x/1/2 - 1/(2Nr 2 

implying a modified Coulomb potential 

gCa 
~a(r) = (18) 

4"trr + (g/2f  , ) x / I /2  - I/(2Nc) 

The result for gauge group U(1) is obtained through the substitution Nc 
- I ,  and the corresponding dilaton-photon configuration was proposed 

already as a solitonic solution in a remarkable paper by Cveti~ and Tseyt- 
fin (1994). 

The removal of the short-distance singularity in the chromo-electric field 
would imply finite energy of the dilaton-gluon configuration: 

= . + 1  e x p ( ~ ) E a ( r ) -  Ea(r)) 

~ /~  1 (19) 
= 2gf, 2No 

However, there exists another quite intriguing solution if we require that 
(l/g 2) exp(4a/f,) is independent of g. This requirement arises naturally in 
string theory, since the nonperturbatively fixed expectation value of the string 
dilaton is supposed to determine the coupling. In the action (1) this require- 
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ment amounts to the constraint that the solution should respect the scale 
invariance of the equations of motion under 

+--,+ 

A ~ exp(--q)A 

g ~ exp(-q)g 

for constant -q. Equations (12) and (14) then imply ~p,({)2 = exp(-~0(~)) = 
46 -2 , yielding 

d#(r) = 2f+ l n ( 8 ~ r  ~ 2-1Nc) (20) 

Ea(r) _ 32Irf~, Nc Caer 
g N c - 1  

This corresponds to an energy density 

~ ( r )  = 4 -~  

whence the energy in a volume of radius r diverges linearly: 

Elf = 16"rr~r 

(21) 

This is an infrared divergence which is not related to new physics at short 
distances, and it would cost an infinite amount of energy to create an isolated 
quark. Therefore it is very tempting to conclude that a dilatonic degree of 
freedom is responsible for confinement in QCD. 
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